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Recent developments on the automation of the X-rays approach to hole-cutting in over-

set grids is further improved. A fast method to compute an auxiliary wall-distance function

used in providing a first estimate of the hole boundary location is introduced. Subsequent

iterations lead to automatically-created hole boundaries with a spatially-variable o↵set

from the minimum hole. An averaged cell attribute measure over all fringe points is used

to quantify the compatibility between the fringe points and their respective donor cells

for di↵erent hole boundary locations. The sensitivity of aerodynamic loads to di↵erent

hole boundary locations and cell attribute compatibilities is investigated using four test

cases: an isolated re-entry capsule, a two-rocket configuration, the AIAA 4th Drag Predic-

tion Workshop Common Research Model (CRM), and the D8 “Double Bubble” subsonic

aircraft. When best practices in hole boundary treatment are followed, only small varia-

tions in integrated loads and convergence rates are observed for di↵erent hole boundary

locations.

I. Introduction

In recent years, structured overset grid technology has been used to perform modeling and simulation
analysis on a wide variety of complex aerospace applications.1–6 There are three steps in creating a

structured overset grid system: surface grid generation, volume grid generation, and domain connectivity.
Surface grid generation involves the decomposition of the surface geometry into quadrilateral overlapping
blocks, and the distribution of grid points to properly resolve the geometry and flow features. Volume grid
generation typically consists of creating near-body curvilinear grids around the surface geometry, and o↵-
body Cartesian grids that fill the region away from the surface. Since both the surface and volume grids are
allowed to overlap arbitrarily, grid points that fall inside solid bodies or outside the computational domain
need to be identified and excluded from the process of solving the governing field equations. This step is
sometimes called hole-cutting or grid-point blanking, and is the first step in the domain connectivity (or grid
assembly) process. At grid boundaries where a flow solver boundary condition is not specified, and at the
boundaries of holes from the hole-cutting process, the solution needs to be interpolated from neighboring
overlapping grids. The second step in domain connectivity involves the search for donor cells (interpolation
stencils) for the fringe points on such boundaries.

Many algorithms and software have been developed over the years to perform hole-cutting. Some of
the more popular ones in use today include a Cartesian hole map and line-of-sight method in PEGASUS5,7

implicit hole-cutting in SUGGAR++,8 PUNDIT,9 and OVERTURE,10 and X-ray hole-cutting11 in the DCF
module of the OVERFLOW flow solver (referred to as OVERFLOW-DCF from here on). These schemes
and software have all been successfully employed on many applications. In problems involving components
in relative motion, hole-cutting needs to be performed at every time step. The X-rays approach is one of
the fastest available in this regime since hole-cutting involves only a direct Cartesian map look-up. The
Cartesian map is generated only once at the beginning for rigid-body motion and is transformed with the
grids as they move relative to each other. Additionally, the number of grid points requiring donor stencil
search in the X-rays approach is typically much smaller compared to that required for implicit hole-cutting
schemes. For the X-rays approach, only L

f

surface layers of fringe points require stencil search where L

f

is
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the number of fringe layers imposed at the outer boundaries and hole boundaries of a grid. For implicit hole-
cutting schemes, every grid point in the entire volume grid system requires a donor stencil search. Hence, the
number of stencil searches for the X-rays approach is proportional to the number of points on a surface layer,
while the number of stencil searches for the implicit hole-cutting approach is proportional to the number of
points in a volume domain. Therefore, for the same stencil-search algorithm, the total stencil search time for
the X-rays scheme is much faster than that for the implicit hole-cutting method simply because less items
are sent to the search routine.

Although the X-rays approach has a clear advantage in computational speed for moving-body problems,
it has drawbacks in the setup process where the inputs typically require significant user e↵ort and expertise.
This problem has been addressed in Ref. 12 which presented methods to automate all of the inputs required.
The only inputs needed are the flow solver boundary conditions for each grid, and a component ID that is
assigned to each solid wall surface in the grid system. The scheme presented in Ref. 12 is implemented into
a software tool called C3P which uses an adaptive X-rays method to create a minimum hole. This leaves the
hole boundary of coarser neighboring grids immediately next to fine viscous cells adjacent to solid walls. The
next step involves using an auxiliary wall-distance function (see Section 2 below) to provide a first estimate
of the hole boundary away from the walls, followed by iterations of the hole boundary to remove orphan
points (grid points that do not have a donor cell due to insu�cient overlap). While this scheme performed
well, the auxiliary wall distance function was expensive to compute. The first objective of the current work
is to investigate faster ways to determine the auxiliary wall-distance function.

In the original X-rays method, the hole boundary o↵set from the minimum hole is specified as a con-
stant distance by the user. In the new approach,12 a spatially-varying hole boundary o↵set is automatically
generated. Various criteria have been used in di↵erent software to determine the location of the hole bound-
ary. In PEGASUS5 and SUGGAR++, a cell compatibility measure between the cell containing the fringe
point and its donor cell is utilized. Examples of this measure include cell volume, aspect ratio, orientation,
maximum length of cell diagonal, and any combination of the above. Applications of di↵erent measures
result in di↵erent locations of the hole boundaries, all of which may be considered to be valid to the extent
that there are no orphan points present. However, it is unclear which measure provides the most desirable
results such as accurate aerodynamic loads and fast solution convergence. The second objective of this work
involves an investigation in the variations in converged values and convergence rates of aerodynamic loads for
di↵erent hole boundary locations and di↵erent values of cell attribute compatibility. The study is performed
using four test cases: an isolated re-entry capsule, a two-rocket configuration, the Common Research Model
from the AIAA 4th Drag Prediction Workshop,13 and the D8 “Double-Bubble” Aircraft.14 Each of these
cases was run using three di↵erent domain connectivity codes: standard X-rays in OVERFLOW-DCF, new
enhanced X-rays in the C3P software, and the PEGASUS5 overset software. The flow solutions for all cases
were computed using the OVERFLOW flow solver.17

II. Hole Boundary Estimate Using an Auxiliary Wall-Distance Function

Figure 1. Auxiliary wall-distance function on surface of
wing-body-tail configuration with small values colored blue
and large values colored magenta.

The hole boundaries obtained after the minimum
hole-cut step are usually not accurate for informa-
tion transfer between grids since fine viscous grid
cells near the wall are serving as donor cells for
fringe points from much coarser regions of neigh-
boring grids. In Ref. 12, a first estimate of a more
appropriate hole boundary location away from the
minimum hole is provided by a wall-distance func-
tion. It was found that in order to expand from the
minimum hole on the surfaces of intersecting com-
ponents such as a wing-body junction, the standard
wall-distance function used for solving turbulence
model equations is insu�cient. A more sophisti-
cated auxiliary wall-distance function that is sen-
sitive to distances between components down to the wall surface is needed. Figure 1 shows such a function
where the distance between intersecting components is small (blue) at the wing-body junction, and similarly
for the tail-body junction.
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(a) (b)

Figure 2. Reference Cartesian box grid for auxiliary wall-distance function computation on two-rocket test case. (a)
Volume grid slices for reference Cartesian box and rockets surface geometry. (b) Cells on reference Cartesian box
intersected by surface cells on one of the rockets.

The automated hole-cutting scheme in Ref. 12 begins by identifying the geometric components in the grid
system. Let the total number of components in the system be N

c

. Each near-body curvilinear grid point in
the volume grid system is associated with a component by tracing a grid line from the grid point to the wall
surface of the component. Grid points in o↵-body grids that do not contain a wall are not associated with
any component. For convenience, these grid points are defined to be associated with component ‘zero’.

The first hole boundary estimate from the minimum hole requires the computation of the distance from
each grid point to the closest wall belonging to each component that is not associated with the point. Suppose
a grid point is associated with component M . This scheme requires the computation of the distance from
the point to each component other than M . In order to determine the hole boundary estimate for all grid
points in the system, N

c

wall-distance function computations are needed over the entire grid domain. For
this new approach to be competitive in speed compared to the original X-rays scheme, a fast method to
compute this auxiliary wall-distance function is needed. One such scheme was presented in Ref. 12 but was
found to be too slow. A very di↵erent but much faster scheme is now outlined below. It is noted that for
purpose of hole-cutting, an approximate wall-distance is su�cient to provide satisfactory results.

The first step involves constructing a uniform Cartesian reference box grid around all near-body volume
grids in the configuration (Fig. 2a). These are volume grids that contain a solid wall boundary. The uniform
spacing for this reference Cartesian grid is chosen to be the average surface grid spacing of all near-body
grids. A user-specified maximum (e.g., 10 million points) is used to limit the total number of grid points in
this Cartesian grid.

For a given component i, the Cartesian grid cells that intersect the component surface are quickly
identified (Fig. 2). These intersecting-cells are easily determined by finding the bounding box of each
triangle on a triangular tessellation of the component surface, and then marking the reference Cartesian
grid cells that are intersected by the bounding box (Fig. 2b). For each vertex on the intersecting-cells, an
accurate computation of the distance to the component surface is performed. The wall-distance function
values on all neighboring vertices of the intersecting-cell vertices are approximated by adding the known
values of the wall-distance function to the Cartesian cell size. This marching scheme is repeated until an
approximate wall-distance has been determined for all remaining Cartesian grid vertices that do not belong
to the original intersecting-cells.15 After the fast marching scheme has been applied to all components, a
wall-distance function W

i

is available on the reference Cartesian grid for each component i.
Given any volume grid point P that is associated with component M , the distance to a wall that does not

belong to M is quickly determined by a Cartesian cell look-up in the reference Cartesian grid, followed by
interpolation of the approximate wall distance to P . For a volume grid point P that is not associated with
any component (one from an o↵-body grid with no solid wall boundary), the same direct look-up procedure
can be used to determine its approximate wall distance if the point lies inside the reference Cartesian grid.
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If the point P lies outside the reference Cartesian grid as shown in Figure 3, its distance D

Q

to the closest
point Q on the outer boundary of the reference Cartesian box can be easily computed. The approximate
wall distance for this point is then the sum of D

Q

and the approximate wall distance at Q.

Figure 3. Computation of approximate closest distance from
point P to the wall. If P is inside the reference Cartesian
grid, direct interpolation is used. If P is outside the refer-
ence Cartesian grid, the distance from P to point Q is added
to the wall distance at Q, where Q is the closest point on
the outer boundary of the reference Cartesian mesh from P.

Figure 4a shows the auxiliary wall-distance func-
tion on a slice of the reference Cartesian box grid for
component ‘zero’ which is associated with all grid
points belonging to any o↵-body grid (a grid that
does not contain a wall). It can be seen that this
function is identical to the standard wall-distance
function, i.e., finding the minimum distance to all
walls in the system (distance to both rockets). Fig-
ure 4b shows a similar function for the top rocket
only. This is used to mark up points in the bottom
rocket that fall too close to the top rocket. Such
points are to be converted from field to hole points.

After an initial estimate of an o↵set hole bound-
ary using the auxiliary wall-distance function, some
orphan points may be present due to insu�cient
grid overlap. Ref. 12 describes a hole boundary ad-
justment procedure to reduce the number of orphan
points. If implemented correctly, this procedure should produce no more orphan points compared to the
minimum hole-cut state. Figures 5a,b show the final adjusted hole boundaries for the Trapwing 3-element
high-lift configuration.16 The automated procedure is able to create a spatially-varying hole-boundary o↵set
distance in the tight gap between the high-lift elements. Moreover, inter-grid communication occurs mostly
between cells of comparable sizes. In the standard X-rays approach, the hole boundary would have been
limited to a small constant o↵set distance which would result in large discrepancies in the cell sizes of fringe
points and their donor stencils in some regions. Creating a variable hole-boundary o↵set distance using
standard X-rays is possible, but extra manual e↵ort would be required to construct additional hole-cutting
surfaces.

(a) (b)

Figure 4. Approximate auxiliary wall-distance function on volume grid slice of reference Cartesian box for two-rockets
test case. (a) Distance to both rockets. (b) Distance to top rocket only.

Table 1. Comparison of wall-clock time (minutes) for various test cases on Xeon workstation with Intel Fortran compiler
for running domain connectivity using OVERFLOW-DCF (original X-rays) with 8 MPI ranks, C3P (improved X-rays)
with 8 OpenMP threads, and PEGASUS5 with 8 MPI ranks (XV-15 = rotorcraft with hub and blades, DPW4 = AIAA
4th Drag Prediction Workshop model, 2-Rockets = two-rocket configuration, HLWS1 = AIAA 1st High Lift Prediction
Workshop 3-element wing configuration (Trap Wing),16 D8 = D8 Double Bubble Aircraft).

Cases # Grid points (⇥106) DCF C3P PEG5 % change in C3P from DCF

XV-15 10.0 0.3 0.6 0.75 +100%

DPW4 16.8 1.2 1.5 1.7 +25%

2-Rockets 24.5 0.5 0.8 1.0 +60%

HLPW1 50.6 2.3 1.7 4.2 -26%

D8 83.0 11.5 7.2 8.2 -37%
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(a) (b)

Figure 5. Hole boundaries for the Trapwing 3-element high-lift configuration with fringe points marked by symbols.
(a) Gap between slat and wing. (b) Gap between wing and flap.

The new auxiliary wall-distance function computation scheme has been implemented into the domain
connectivity software C3P.12 A factor of 2.5 to 12 times speed up was observed in di↵erent cases in using the
new wall-distance computation algorithm described above compared to the scheme presented in Ref. 12. It is
anticipated that the total domain connectivity computational time (hole-cutting and donor stencil search) for
the new approach in C3P should be more than that for the original X-rays approach in OVERFLOW-DCF.
In the original scheme, the X-ray maps and o↵set distances from the minimum hole are manual prescribed,
and donor stencil search is performed just once for all the identified fringe points. In the present method
implemented in C3P, extra work is required to automatically build the adaptive X-ray maps, compute the
auxiliary distance function, iterate on the hole boundaries to remove the orphan points, and perform donor
stencil search multiple times during the hole boundary iterations. Despite this extra work, it is found the
computational cost for C3P is not that much more than the original scheme in OVERFLOW-DCF, and
usually less than the scheme utilized in PEGASUS5. This is illustrated by the wall clock times presented in
Table 1 for running five test cases on a Xeon desktop machine using the Intel Fortran compiler. The results
show that the new scheme is slower than the e�cient original X-rays scheme for the smaller test cases, but
by no more than a factor of two. For larger test cases, the new scheme appears to perform better than the
original. Further testing on a wider variety of cases is needed to determine if the observed timing trends
above hold in general.

It is also noted that for OVERFLOW-DCF and C3P, the domain connectivity parallel e�ciency is
typically around 25% - 40%, while that for PEGASUS5 is typically around 65% - 80%. This is because
OVERFLOW-DCF’s load balancing scheme has been constructed to optimize on flow solver e�ciency and not
on domain connectivity e�ciency. No attempt has been made to perform load balancing on the computational
work required for C3P. Even with a factor of two or three slower in CPU wall-clock time in using C3P
compared to the original X-rays scheme, savings in manual e↵ort time with C3P typically far outweighs any
CPU time disadvantages.

III. Aerodynamic Loads Sensitivity Study

For many years, users of overset grid methods have used various algorithms and software to create hole-
cuts on complex grid systems. As long as the hole boundaries have been displaced away from the minimum
hole, and the number of orphan points has been reduced to zero or a reasonable number (<0.01% of the total
number of grid points in the system), the grid system is deemed acceptable for flow solution computation.
Unlike the minimum hole which can be uniquely defined by tagging grid points that fall inside the solid
boundaries of components, the o↵set or final hole boundary used for flow computations is not uniquely
defined. In algorithms such as the original X-rays approach, the final hole boundary is defined by the user
via a constant distance o↵set from the minimum hole. In more complex algorithms, the final hole boundary
is automatically generated based on matching cell attributes between fringe points and their interpolation
donor cells. The hole boundaries tend to be smooth in the former, while they tend to be more ragged in
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the latter. In both cases, the hole boundaries are away from the minimum hole and orphan points may be
absent.

It has long been adopted as best practice that grid communication should occur between grid cells
of comparable attributes so that flow gradients resolved by one grid can be accurately transferred to its
neighboring grid. However, there has not been a consensus on which grid cell attribute, or combination of
attributes, should be used for controlling the hole boundary location. Attributes in use today include ratios
of cell volume, aspect ratio, orientation, maximum cell diagonal length, and others.7,8 Furthermore, to the
authors’ knowledge, the e↵ects of utilizing di↵erent attributes on the converged value and convergence rates
of aerodynamic loads have not been studied. The work presented in this section is an investigation into such
e↵ects.

Figure 6. Normalized hole boundary o↵set between near-body and o↵-body grids (Db = approximate normal distance to
outer boundary for near-body grid, Dh = hole boundary o↵set distance, � = normalized hole boundary o↵set distance,
hb indicates hole boundary location of o↵-body Cartesian grid). (a) � = 0. (b) � = 0.5. (c) � > 1.

In order to provide a fair comparison between di↵erent test cases, a normalized hole boundary location
or o↵set is defined. Three situations can arise in hole boundaries between grids.

1. A component cutting a hole in an o↵-body grid (Fig. 6).

2. Disjoint components cutting holes in grid points associated with other components (Fig. 7a).

3. A component cutting a hole in grid points on and close to the surface of another intersecting component
(Fig. 7b).

In case (1), let D

b

be the approximate normal distance from the surface to the outer boundary of the
near-body grid(s) associated with the component. Also let D

h

be the hole boundary o↵set distance from the
minimum hole. Then, a normalized hole boundary o↵set distance � can be defined to be

� = D

h

/D

b

(1)

Figure 6 illustrates the hole boundary locations for various values of � for case (1).
In case (2), let D

m

be the minimum distance between two disjoint components (Figure 7a). Then, a
normalized hole boundary o↵set distance � between the components can be defined to be

� = D

h

/(0.5D
m

) (2)

In this case, the denominator on the right-hand-side is half of the minimum distance between the components.
If a hole boundary o↵set D

h

is created to lie at > 0.5D
m

, there will be no overlap between the grids from the
two components at the minimum distance location. The situation at D

h

= 0.5D
m

should then correspond
to a normalized o↵set distance of � = 1.

In case (3), let D

c

be the surface grid marching distance of the collar grid between two intersecting
components (Figure 7b). Then, a normalized hole boundary o↵set distance � between the components can
be defined to be

� = D

h

/D

c

(3)

Similar to case (2), a hole boundary o↵set D
h

> D

c

would result in no overlap between the collar grid and
the surface grids associated with the intersecting components. The situation at D

h

= D

c

would correspond
to a normalized o↵set distance of � = 1.
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(a) (b)

Figure 7. Normalized hole boundary o↵set distance � for disjoint and intersecting components. (a) Two disjoint
components with � = Dh/(0.5Dm). (b) Two intersecting components with � = Dh/Dc. Dh = hole boundary o↵set
distance, Dm = minimum separation distance between disjoint components, Dc = collar grid surface marching distance
between intersecting components.

In the current study, the cell volume is used as the compatibility measure between a fringe point and
its donor cell. No attempt is made to determine which attribute provides the best results. The cell volume
is selected as a simple measure to illustrate the di↵erences that can be obtained in the behavior of the
converged values and convergence rates of the aerodynamic loads.

Let V
f

and V

i

be the cell volumes at a fringe point and its donor cell, respectively. The compatibility c

i

is defined to be
c

i

= min(V
f

/V

i

, V

i

/V

f

) (4)

A value of c
i

close to one means the cell volume at the fringe point and volume of its donor cell are very
similar, while low values of c

i

means the corresponding cell volumes are vastly di↵erent. Orphan points are
given a value of zero for c

i

. By averaging c

i

over all fringe points, a global measure of average compatibility
C can be computed.

For the test cases presented in the subsequent subsections, three methods for determining hole boundaries
are compared using three software packages: standard X-rays in OVERFLOW-DCF, enhanced X-rays in C3P,
and the PEGASUS5 software. In standard X-rays, a constant user-specified o↵set distance is used to create
the final hole boundary from the minimum hole. In C3P, a wall-distance function is used to obtain an initial
o↵set of the hole boundary from the minimum hole. Iterations on the hole boundary then follow to drive
the number of orphan points to zero. In PEGASUS5, grid points not in the minimum hole go through an
implicit hole-cut process. These grid points are either left as field points or marked as fringe points based
on a cell attribute parameter which includes cell volume, aspect ratio, and orientation.

The OVERFLOW17 compressible viscous flow solver is used to compute the flow solutions for all test
cases. Since the current study is concerned with investigating the di↵erences in convergence behavior between
cases with di↵erent hole boundary locations, it is not critical that the cases be run to a converged steady
state. The absolute values of the converged loads is not important, but the runs were made to continue
well past the initial transient until a clear trend was observed between cases with di↵erent hole boundary
locations. The aerodynamic load convergence history and final values are presented for normalized hole
boundary o↵set distances � = 0.0, 0.1, 0.25, 0.5, 0.75, 0.9 using standard X-rays, and for the automatically
generated hole boundaries from the C3P and PEGASUS5 software. For each case, the average cell size
compatibility C between fringe and donor cells is also reported for the hole-boundary fringe points.

III.A. Isolated Re-entry Capsule

The isolated capsule test case consists of three near-body grids around the capsule embedded in a Cartesian
box grid with a total of 11 million grid points in the system. Uniform spacing is used in the Cartesian
core that matches the near-body grid outer boundary spacings, and stretched spacing is used to extend the
Cartesian grid to the far field. The solution is computed at a free stream Mach number of 1.2, angle of
attack of 180 degrees (flow directed at the heat shield), and a Reynolds number per inch of 18200.

Figure 8a shows the automatically created hole boundary by C3P for this single-component test case.
In this simple case, the hole boundary location is almost identical to the manually specified � = 0.5 case.
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Figure 8b shows the Mach number contours for the converged solution with a bow shock in front of the
heat shield. No orphan points are present for the C3P and PEGASUS5 cases, and for all � cases except for
� = 0.9 where there are 930 orphan points.

(a) (b)

Figure 8. Isolated re-entry capsule test case. (a) Volume grid slices for near-body grids and o↵-body Cartesian grid
showing hole boundary location created automatically by C3P. Fringe points are marked by symbols. (b) Mach number
contours.

With an angle of attack of 180 degrees, the lift and pitching moment coe�cients remain practically zero
as expected. Figure 9a shows the convergence histories of the drag coe�cient for the di↵erent cases. All
cases appear to converge at about the same rate but to slightly di↵erent converged values. The C3P (cyan)
result falls close to the � = 0.5 case (blue) as expected since the hole boundaries of the two cases are almost
identical. On either side of the � = 0.5 case are the � = 0.25 and 0.75 cases. The PEGASUS5 and � = 0.9
cases have converged C

D

’s furthest from the mean of the test cases (about 0.6% deviation from the mean).
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Figure 9. Isolated re-entry capsule test case drag coe�cient convergence and compatibility. (a) Drag coe�cient CD

convergence history for various �, C3P, and PEGASUS5. (b) Hole boundary fringe points interpolation compatibility
and converged value of CD for various �, C3P, and PEGASUS5.

Figure 9b shows the average cell size compatibility between fringe points and donor cells for hole boundary
points (black and white stripe bars) for various hole boundary locations and treatments. As can be seen
from the relative grid resolutions of the volume grid slices in Figure 8a, the � = 0.5 case has the best
compatibility among the OVERFLOW-DCF cases for the hole boundary, with the compatibility falling
lower as � deviates from 0.5. However, the final value of C

D

does not appear to correlate well with averaged
cell size compatibility. For example, the cell size compatibility for the � = 0.25 and PEGASUS5 cases are
almost the same, but the final C

D

values are quite di↵erent.
Figure 10 shows the variation of the integrated sectional drag against streamwise distance x. The plot

for all cases fall practically on top of each other. Only small di↵erences are observed in the flow separation
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Figure 10. Isolated re-entry capsule test case sectional drag coe�cient CD for various �, C3P, and PEGASUS5. (a)
Overall view. (b) Zoomed view.

region behind the shoulder of the capsule. It is well known that this case, with an angle of attack of 180
degrees, is highly sensitive in the shoulder region. Small perturbations in the numerical scheme, such as
hole boundary location, could trigger slight di↵erences in the flow, resulting in small di↵erences in the flow
separation pattern.

III.B. Two-Rockets Configuration

(a) (b)

Figure 11. Two-rockets test case. (a) Volume grid slices for near-body grids and o↵-body Cartesian grid showing hole
boundary location created automatically by C3P. (b) Mach number contours.

The two-rockets test case consists of two identical rockets with three near-body grids each embedded in
a stretched Cartesian box grid with a uniform core region. The entire grid system contains 7 grids and 24.5
million grid points. An o↵set exists between the two rockets in both the axial and transverse directions.
The solution is run at a freestream Mach number of 1.8, with angle of attack at 0 degree, and a Reynolds
number per inch of 2⇥ 105.

Table 2. Number of orphan points for various �’s, C3P, and PEGASUS5 for two-rockets test case.

Hole boundary treatment � = 0.0 � = 0.1 � = 0.25 � = 0.5 � = 0.75 � = 0.9 C3P PEG5

No. of orphan points 0 0 12 195 1722 75622 0 0

Figure 11a shows the automatically created hole boundary from C3P for the upper rocket in this two-
disjoint-components test case. A spatially-variable hole-boundary o↵set is created in the near-body grids
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Figure 12. Two-rockets test case lift (CL) and drag (CD) coe�cient convergence histories. (a) Top rocket CL. (b) Top
rocket CD. (c) Bottom rocket CL. (d) Bottom rocket CD.

between the two rockets. Figure 11b shows the Mach number contours for the converged solution with
complex shock reflections in the region between the rockets. The number of orphan points for di↵erent �’s,
C3P, and PEGASUS5 are shown in Table 2. All cases have either zero or a small number of orphan points
(<0.01%) relative to the total number of grid points, except for the � = 0.9 case whose number of orphan
points is about 0.3% of the total number of grid points.

Figure 12 shows the convergence histories of the lift (C
L

) and drag (C
D

) coe�cients for the top and
bottom rockets. The cases appear to converge at about the same rate for di↵erent �’s, but to di↵erent final
values as in the isolated capsule case. For C

L

of both rockets and for C
D

of the bottom rocket, results from
C3P, PEGASUS5 and the ‘best practice’ values of �’s (0.25, 0.5, 0.75) form a closely packed group. For C

D

of the top rocket, no clear trend is observed.
Figure 13 shows the average cell size compatibility measure between hole boundary fringe points and

donor cells for various �’s, C3P, and PEGASUS5. The � = 0.75 case appears to have the best compatibility
value but the final converged loads do not appear to vary much between all the cases except for the � = 0,
0.1, and 0.9 cases.

Figure 14 shows the surface pressure coe�cient profile on a cut through the y = 0 symmetry plane for
the bottom rocket. Such a cut produces two curves, one along the side facing towards the top rocket (+z

side), and one along the side facing away from the top rocket (�z side). The plots demonstrate that there
is very little di↵erence between the � = 0.1 case, and the C3P and PEGASUS5 cases. The zoomed views in
Figure 14 show that no consistent conclusions can be drawn about the small di↵erences between the three
cases.
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Figure 13. Two-rockets test case hole boundary fringe points interpolation compatibility. (a) Top rocket CL. (b) Top
rocket CD. (c) Bottom rocket CL. (d) Bottom rocket CD.
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Figure 14. Pressure coe�cient against streamwise distance at y = 0 symmetry plane cut through bottom rocket. (a)
Side facing towards top rocket. (b) Side facing away from top rocket.
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III.C. AIAA 4th Drag Prediction Workshop Common Research Model

The DPW4 test case is the Common Research Model (CRM) from the 4th AIAA Drag Prediction Workshop.
It is a half-body configuration with three components: a fuselage, a wing and a horizontal tail. The grid
system includes near-body grids for each of the three components, a collar grid between the fuselage and
wing, a collar grid between the fuselage and tail, and a stretched Cartesian box grid with a uniform core
region. The entire grid system contains 17 grids and 16.8 million grid points. The solution is run at a
freestream Mach number of 0.85, an angle of attack of 2.363 degrees, and a Reynolds number per inch of
18129.

(a) OVERFLOW-DCF (b) C3P with explicit blanking

(c) PEGASUS5 (overall view) (d) PEGASUS5 (close-up view)

Figure 15. Trailing edge treatment of fringe points and iblanks for DPW4 test
case. Fringe points are marked by solid symbols. (a) OVERFLOW-DCF: C-grid
points treated as field points. (b) C3P: C-grid points treated as hole points. (c)
PEGASUS5: C-grid points treated as second-level fringe points. (d) PEGASUS5:
close-up view near trailing edge surface.

The grid system down-
loaded from the DPW4 web-
site contains a C-grid around
the wing with a one point col-
lapse over the finite-thickness
trailing edge, and a cap grid
that wraps around the trail-
ing edge with 25 points over
the trailing edge face (Fig-
ure 15). In the test runs,
three di↵erent treatments of
this trailing edge region were
compared. For the standard
X-ray runs, and for the first
C3P run, the C-grid points
were left as field points (Fig-
ure 15a). For the second
C3P run, the C-grid points
were explicitly blanked in the
vicinity of the trailing edge
(Figure 15b). In the PEGA-
SUS5 case, no explicit hole-
cutting of the C-grid points
was done, but PEGASUS5
added extra layers of fringes to
create a virtual-hole and over-
lap using its cell-di↵erence al-
gorithm (Figures 15c, d). In
the second C3P and in the PE-
GASUS5 cases, the cap grid
is the only grid responsible for
resolving the flow in the trail-
ing edge region.

Figure 16a shows the automatically created hole boundary by C3P for this intersecting components test
case. Figure 16b shows the pressure coe�cient contours for the converged solution with a shock over the
wing. The number of orphan points for di↵erent �’s, C3P, and PEGASUS5 is shown in Table 3. All cases
have either zero or a small number of orphan points (<0.04%) relative to the total number of grid points
except for the � = 0.9 case (0.2%).

Table 3. Number of orphan points for various �’s, C3P, and PEGASUS5 for DPW4 test case.

Hole boundary treatment � = 0.0 � = 0.1 � = 0.25 � = 0.5 � = 0.75 � = 0.9 C3P PEG5

No. of orphan points 0 0 0 3027 6017 37546 0 0

Figures 17a, 17c, 17e show the convergence histories of the lift (C
L

), drag (C
D

), and pitching moment
(C

M

) coe�cients. The cases appear to converge at about the same rate for di↵erent �’s and C3P, with the
case from PEGASUS5 being more oscillatory. Final values of the loads appear to fall into two groups. In
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(a) (b)

Figure 16. DPW4 test case. (a) Volume grid slices for near-body grids and o↵-body Cartesian grid showing hole
boundary location created automatically by C3P. (b) Pressure coe�cient contours.

group 1, the influence of the C-grid is removed in the trailing edge region by blanking (C3P) or by marking
grid points as second-level fringe (PEGASUS5). In group 2, the C-grid points are left as field points in the
trailing edge region. Figure 17a shows that the group 1 cases produce a final lift coe�cient that matches
closer to the experimental value of 0.5.

The maximum deviation of the final value of any member of the first group to the mean of the group is
about 3% for C

L

, 1.7% for C

D

(less than 0.5 drag count), 1.6% for C

M

. The maximum deviation of final
value of any member of the second group (excluding � = 0.0 and 0.9) to the mean of the group is about
0.07% for C

L

, 2.8% for C

D

(less than 1 drag count), and 3.3% for C

M

. From the DPW4 workshop, many
structured grid flow solvers using di↵erent numerical schemes and turbulence models also reported converged
values of C

D

and C

M

. The maximum deviation from the mean for this group is about 7 drag counts for C
D

and 18.9% for C
M

, which is much larger than the di↵erences observed for di↵erent hole boundary locations
in the present study.

Figures 17b, 17d, 17f show the cell size compatibility between the hole boundary fringe points and donor
cells for various �’s, C3P, and PEGASUS5. Cell size compatibility for hole boundary points are best for
C3P and PEGASUS. However, the final load values are similar for cases with di↵erent compatibility values
except for the � = 0.0 and 0.9 cases.

In Figure 18a, the plot for sectional force coe�cient in z against spanwise distance y shows that variations
between the di↵erent cases occur primarily over the wing, with almost no variation over the fuselage. On
the plot of the same force coe�cient against streamwise distance x as depicted in Figure 18b, the same
conclusion could be drawn. Again, the cases follow the same two groupings as in the convergence history
plots. The plots for the � = 0.1, 0.25, 0.5 and 0.75 cases are practically on top of each other, while the plots
for C3P with explicit trailing edge region blanking and PEGASUS5 are very close to each other.

Figures 19a, b show the surface pressure coe�cient di↵erence between a representative case from group 1
(C3P with trailing edge region blanking), and a representative case from group 2 (� = 0.5). The plots
illustrate the di↵erence in the shock location on the upper surface of the wing. Figure 19c shows the C

p

profile along a constant span cut on the outboard side of the wing. This clearly depicts that cases from
group 2, by not resolving and treating the trailing edge region accurately, the circulation around the airfoil
section and the shock location are slightly shifted from those from group 1. The lesson to take away from
this test case is that if there are multiple grids resolving the same region in a high-gradient region near the
geometry surface (e.g., leading and trailing edges of wings), the grid subsets that do not su�ciently resolve
the flow should be blanked or treated as fringe points.

III.D. D8 Double Bubble Subsonic Aircraft

The D8 test case consists of a half-body subsonic aircraft with a fuselage, a wing, a vertical and a horizontal
tail embedded in a wind tunnel with a support strut (Figure 20a). A small gap exists between the strut
and the fuselage. This configuration contains both intersecting components (fuselage, wing, and tails),
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Figure 17. DPW4 test case aerodynamic loads convergence histories and hole boundary fringe points interpolation
compatibility (c3p-1 = no trailing-edge region blanking, c3p-2 = with trailing-edge region blanking). (a) CL convergence
history. (b) Cell size compatibility and CL. (c) CD convergence history. (d) Cell size compatibility and CD. (e) CM

convergence history. (f) Cell size compatibility and CM .
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Figure 18. Sectional force coe�cient in z for DPW4 test case. (a) Sectional force coe�cient in z against y. (b) Sectional
force coe�cient in z against x (global view with zoom box marked by dashed lines).
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Figure 19. Di↵erence in surface pressure coe�cient Cp between C3P case with trailing edge blanking and � = 0.5 case
for DPW4 (red indicates positive di↵erence � 0.1, blue indicates negative di↵erence  0.1, green indicates approximately
zero di↵erence). (a) Bottom surface. (b) Top surface. Dotted line indicates constant span station cut for figure c. (c)
Cp against streamwise distance x on constant span cut marked by dotted line in figure b.

and disjoint components (fuselage and strut). Curvilinear near-body grids are used to model the various
components while several o↵-body stretched Cartesian box grids are employed to fill the interior of the
wind tunnel. The entire grid system contains 35 grids and 83 million grid points. The solution is run at a
freestream Mach number of 0.16, zero angle of attack, and a Reynolds number per inch of 79500.

Figure 20a shows various volume grid slices with automated hole boundaries created by C3P. Figure 20b
shows the pressure coe�cient contours for the converged solution on the surface geometry. The half-body
solution has been reflected to show the solution on the full configuration so that the solution on the inboard
side of the vertical tail is visible. The number of orphan points for di↵erent �’s, C3P, and PEGASUS5 is
shown in Table 4. All cases have either zero or a small number of orphan points (< 0.03%) relative to
the total number of grid points except for the � = 0.9 case which failed to converge due to the relatively
large number of orphan points (0.3%). The 139 orphan points for the � = 0 case are due to the choice of
the constant X-ray image plane spacing which is inadequate in resolving certain regions of the geometry. In
practical applications of standard X-rays, � = 0 (minimum hole) is never used, and hence this situation never
arises. The 12 orphan points for the PEGASUS5 case are located in the trailing edge region of the horizontal
tail. Several highly twisted cells exist just o↵ the surface of the razor sharp trailing edge which prevented
the stencil search procedure from finding the appropriate donor cell. In practice, the OVERFLOW solver
fills these orphan points with a reasonable solution that is averaged from their validly computed neighbors.
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Table 4. Number of orphan points for various �’s, C3P, and PEGASUS5 for D8 test case.

Hole boundary treatment � = 0.0 � = 0.1 � = 0.25 � = 0.5 � = 0.75 � = 0.9 C3P PEG5

No. of orphan points 139 1 1 46 21622 238313 0 12

(a) (b)

Figure 20. D8 test case. (a) Volume grid slices for near-body grids and o↵-body Cartesian grid showing hole boundary
location created automatically by C3P. (b) Pressure coe�cient contours on surface geometry of full-body obtained by
reflecting half-body solution.

Figures 21a, 21c, 21e show the convergence histories of the lift (C
L

), drag (C
D

), and pitching moment
(C

M

) coe�cients. Again, all cases appear to converge at about the same rate except the oscillations appear
to damp out faster for the C3P case. For C

L

and C

M

, the C3P and PEGASUS5 cases are converging to
di↵erent values than the � cases. For C

D

, the C3P case appears to be converging to a di↵erent value than
the other cases but the di↵erence is small (about 2 drag counts). The � = 0.0 case for C

D

is the outlier
here with a converged value of 0.0394 which lies outside the bounds of Figure 21c. The maximum deviation
of the final converged values of all cases to the mean converged value is about 1.6% for C

L

, 0.4% for C

D

(excluding the � = 0 case), and 2.2% for C
M

. These variations are of the same order of magnitude as those
found in a study on the e↵ects of various numerical methods, grid parameters, and turbulence models on
the D8.14 For example, by varying the grid stretching ratio from 1.1 to 1.25, variations in C

L

and C

D

range
from 1% to 12.5%. Usage of the Spalart-Allmaras (SA),18 Baldwin-Barth19 and SST20 turbulence models
show variations in C

L

and C

D

of 2.1% - 5.5% relative to the SA model.
Figures 21b, 21d, 21f show the cell size compatibility between hole boundary fringe points and donor

cells for various �’s, C3P, and PEGASUS5. The PEGASUS5 case appears to have the best compatibility
value in this case but the final converged loads for the di↵erent cases do not appear to correlate with the
compatibility value.

Similar to the DPW4 test case, di↵erences in the hole boundary and fringe point treatments on the
wing leading and trailing edge regions lead to slight di↵erences in the circulation and the surface pressure
coe�cient on the wing surface. Such small di↵erences are illustrated in a constant span cut plot of C

p

against
x in Figure 22. The � = 0.5 curve falls between the C3P and PEGASUS5 curves, but all three are very close
to each other.

Figures 23 compares the di↵erent hole boundary treatments around the wing by showing grid slices with
iblanks and fringe points (symbols) along a constant span cut. There are three grids in the vicinity of
the wing: a body-fitted curvilinear O-grid around the wing (orange), a wake box grid that goes right up
to the trailing edge of the wing (blue), and an o↵-body Cartesian box grid (green). In the leading edge
region, the e↵ective hole boundary from PEGASUS5 is further away from the surface compared to that from
OVERFLOW-DCF (� = 0.5) and C3P. PEGASUS5 adds second-level fringe points to the entire Cartesian
grid region in favor of the wing C-grid, creating a virtual hole in this box grid that is bigger than either the
� = 0.5 or the C3P grids.
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Figure 21. D8 test case aerodynamic loads convergence histories and hole boundary fringe points interpolation com-
patibility. (a) CL convergence history. (b) Cell size compatibility and CL. (c) CD convergence history. (d) Cell size
compatibility and CD. (e) CM convergence history. (f) Cell size compatibility and CM .
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Figure 22. Surface pressure coe�cient against streamwise distance x

on a constant span cut on the wing for the D8 test case.

In the trailing edge region, the man-
ual OVEFLOW-DCF scheme allows both
the near-body wing grid points and the
wake box grid points to remain as field
points except for the double fringe outer
boundary of the wake box grid (Fig-
ure 23j). The o↵-body Cartesian grid has
been blanked in this region. For C3P,
both the wake box grid and the o↵-body
Cartesian grid are blanked in the imme-
diate vicinity of the trailing edge, leaving
the near-body wing grid as the only grid
used to resolve the flow immediately be-
hind the trailing edge (Figure 23k). A
little further downstream, the wake grid
takes over in resolving the wake (Fig-
ure 23h). For PEGASUS5, most of the
near-body wing grid points in the wake are treated as second level fringe points except for a few layers of
points o↵ the wing surface. The wake box grid points are left as field points in this region except for the
double fringe outer boundary at the upstream end (Figure 23l). Of the three schemes, the hole boundary of
the o↵-body Cartesian grid is closest to the wing surface for C3P.

IV. Summary and Conclusions

The most expensive step in the automated X-rays approach12 for determining hole boundaries in overset
grids was the computation of an auxiliary wall-distance function. An e�cient approximate method to
compute this function is outlined in the current work. This involves determining an accurate wall-distance
for cut-cells in a reference Cartesian grid, followed by a Fast Marching Method to fill the remaining grid
points in the Cartesian mesh with an approximate wall distance. Wall distance for an arbitrary grid point is
then easily obtained by interpolation from the reference Cartesian mesh. Results from test cases indicate that
the new method, when implemented into the domain connectivity code C3P, is able to produce connectivity
results in a comparable amount of wall-clock time to the original X-rays method in the OVERFLOW-DCF
software for most of the test cases, despite additional computational work.

The sensitivity of converged values and convergence rates of aerodynamic loads to hole boundary locations
is studied using four test cases. These include an isolated re-entry capsule in supersonic flow, a two-rockets
configuration in supersonic flow, the AIAA 4th Drag Prediction Workshop CRM in transonic flow, and the
D8 Double Bubble subsonic aircraft. For each test case, a sequence of runs are performed with di↵erent
normalized hole boundary o↵set locations created by manual specification using the original X-rays approach,
with the automatically-created hole boundary location from the improved X-rays scheme in C3P, and with
the level-2 fringe treatment using a cell-di↵erence parameter in PEGASUS5. At each hole boundary location,
a measure of average cell volume compatibility is also evaluated between all the fringe points and their donor
cells. Results from the runs indicate that the convergence rates of the aerodynamic loads appear to be
about the same for all hole boundary locations, but the converged values vary slightly. For all test cases,
variations in the converged loads between di↵erent hole boundary locations in the ‘best practice’ range
(0.25  �  0.75), and for C3P and PEGASUS5 are small relative to e↵ects from other sources such as grid
stretching and turbulence models. Similarly, no obvious correlations are found between reasonable values of
average cell size compatibility (� 0.2) and final converged loads for the test cases presented.

The observations above suggest that an averaged measure of cell attribute compatibility is too insensitive
to distinguish di↵erences between the e↵ects of di↵erent hole boundary locations. A more relevant measure
of compatibility between fringe points and their donor stencils may require considerations of both grid
attributes and solution gradients. A significant fraction of the observed di↵erences in aerodynamic loads is
most likely originating from a relatively small region of the flow field. This is demonstrated by the DWP4
test case where di↵erences in hole boundary locations and fringe points treatment occur in a small part of the
domain with high gradients (e.g., leading and trailing edges of wings), which lead to small di↵erences in the
final converged aerodynamic loads. A recommended best practice from these results is that when multiple
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(a) DCF � = 0.5 (b) C3P (c) PEGASUS5

(d) DCF � = 0.5 (e) C3P (f) PEGASUS5

(g) DCF � = 0.5 (h) C3P (i) PEGASUS5

(j) DCF � = 0.5 (k) C3P (l) PEGASUS5

Figure 23. Hole boundaries on span cut through wing in D8 test case. Fringe points are marked by symbols. (a), (b),
(c) Wing view. (d), (e), (f) Leading edge view. (g), (h), (i) Trailing edge overall view. (j), (k), (l) Trailing edge zoomed
view.
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overlapping grids do not all resolve the flow equally well, grid subsets from the coarser grids should not be
left as field points to influence the flow but should be blanked or treated as second level fringe points. This
is automatically performed in PEGASUS5, but currently manually specified in C3P. Further improvements
in C3P could be implemented to consider both cell attribute compatibility and orphan points removal as
objectives in the hole boundary iteration step.

The current work has not addressed relative motion problems where the original X-rays scheme has an
e�ciency advantage over other methods. As with the original X-rays map, the adaptive X-rays map12 is
almost as e�cient in cutting the minimum hole during relative motion since the same coordinate transform is
used in both cases for the Cartesian map look-up. Further analysis is needed to determine if a wall distance
function can be easily updated from an initial state and a motion transform, and if similar e�ciencies are
attainable for orphan points iterations. These are issues that could be examined in future work.
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